UNIVERSITY OF NOVI SAD FACULTY OF MEDICINE

Study program: Integrated Academic Studies in Medicine

Course title: Nuclear Medicine

Teacher: Jasna M. Mihailović, Radmila R. Žeravica, Branislava P. Ilinčić, Silvija M. Lučić

Course status: essential

ECTS Credits: 2 Condition: -

Course aim

To provide students with knowledge on basic rules for application of open sources of ionizing radiation and diagnostic and therapeutic options of radioactive isotopes.

Expected outcome of the course:

Obtained knowledge in the field of nuclear medicine provide medical doctor to:

- A) learn, accept basic clinical indications for nuclear medicine diagnostic procedures for efficient diagnostic and assessment of treatment response.
- B) to learn how to interpretate nuclear medical scans adequately, to learn about their diagnostic value and limitations
- C) to apply the knowledge into a clinical practise and to refer patient to a treatment
- D) to learn how to refer patient to specific nuclear medicine therapeutic procedures

Course description

Theoretical education

Include general and special part of nuclear medicine. General part includes: radioactive isotopes and radiation, physical principles of radiation detection and equipment (scintillation detector, gamma camera, well counters, PET), basic principles of radiobiology, radio-pharmacology and radiation protection.

Special part includes basic principles of clinical application of nuclear-medicine methods in different clinical conditions, as well as radionuclide therapy: application of radioisotopes in diagnostics of CNS, cardiovascular, respiratory, endocrine, gastrointestinal, hepatobiliar, urinary, musculosceletal, hematological, oncological, infection and inflammation. Positron emission tomography. Hybrid systems. Radionuclide therapy.

Practical education

It represents the introduction to the safety rules in nuclear medicine departments, the use of radioisotopes in nuclear-medicine laboratory: features and application, basic principles of radiopharmaceutical preparations, dosimetry, as well as the basic principles of interpretation of nuclear medicine findings, application of radionuclide therapy.

Literature

- 1. Ziessman HA, O'Malley JP, Thrall JH. Nuclear Medicine: The Requisites, 4th ed. Philadelphia, United States; 2013.
- Mettler FA, Guiberteau MJ. Essentials of nuclear medicine imaging. Philadelphia, Saunders Elsevier, 2006
- Mihailovic J, Goldsmith SJ, Killeen R. FDG PET/CT in Clinical Oncology. Case Based Approach with Teaching Points. Berlin Heidelberg: Springer Verlag, 2012. ISBN: 978-3-642-29865-3.
- 4. Ahmadzadehfar H, Biersack HJ. Clinical applications of SPECT CT. Springer, Berlin Heidelberg, 2014.
- Delbeke D, Israel O. Hybrid PET/CT and SPECT/CT imaging. Springer New York, 2010.
- 6. Aktolun C, Goldsmith SJ. Nuclear Medicine therapy. Principles and clonical applications. Springer New York, 2013.
- 7. Aktolun C, Goldsmith SJ. Nuclear oncology. Philadelphia, Wolter Kluwer Health, 2015.
- Luster M, Duntas LH, Wartofsky L, eds. The thyroid and its disease. Springer International Publishing AG, Switzerland, 2019.

Number of active classes **Theoretical classes: 15 Practical classes: 15** Teaching methods: Theoretical lectures, Practices; Essays

Student activity assessment (maximally 100 points)			
Pre-exam activities	points	Final exam	points
Lectures	10	Written-practices	20
Practices		Oral	50
Colloquium	20		
Fssav			